Indoor Shrimp Production: Economics & Marketing

Kwamena Quagrainie, Ph.D.

kquagrai@purdue.edu **Purdue University**

INDOOR SHRIMP FARMING WORKSHOP September 14, 2018, KSU, FRANKFORT, KY

Funding the Enterprise

Be mindful of initial investments

- Planning, designing, permitting fees
- Capital acquisitions, constructions, etc.
- Value/costs of existing or own assets to be used
- Funding sources
 - Equity funds capital contributions from owner
 - Borrowed capital (loans) with interest
 - Grants
- Think of immediate, intermediate, and long term cash needs (startup, operating & cash flow).

Resources

- Water: Good ground water supply.
- Building:
 - Floor types & drainage
 - Insulation types ~ moisture barriers on walls and ceiling.
 - Water heater ~ types
 - Water Storage ~

FCONOMICS

- Electrical Capacity ~
- Back-up Generator ~

Requirements

- Recirculating Systems:
 - Production stages 2 or 3?
 - Nursery system (1 or 2 phases)
 - Grow-out systems
- Pumps

EXTENSION

Solids Removal

AGRICULTURAL ECONOMICS

Requirements

- Support Equipment:
 - Blowers ~

FCONOMICS

- Heating System ~
- Monitoring System ~
- Feeding Equipment ~
- Feed Storage ~ separate feed storage space (temperature controlled, insulated?)
- Shrimp Handling Equipment ~ Nets, baskets, sorting equipment, graders
- Lab Equipment ~ water quality kit, oxygen meter, microscope, assorted lab ware.

Advantages of Indoor Systems

- Efficient water use
- Small footprint
- Year round production
- Faster growth

ENSION

Lower disease rates

- Efficient feed use
- Lower feed requirements
- Better production
 - management
- Higher yields
- Overall sustainability

Disadvantages of Indoor Systems

- High capital investment
- Technical operating complexity
- Power supply challenges
- Higher energy input
- Liner expense
- Disease risk

ENSION

Higher production costs

Shrimp Market Sizes

- The industry-wide standard is by count / lb.
 - "U/10" (under 10 count) large, 10 & less weigh a lb
 - "61/70" shrimp (61-70 count), very small in size.
 - Shrimp industry shrimp counts in the range of:
 - "21/25"
 - "26/30"
 - "31/35"
 - "36/40"

FCONOMICS

ENSION

Recirculating Systems

- Phased production system usually produces
 - higher overall survival rates & higher
 - production per unit area than in single-phase
 - grow out systems.
 - Production stages 2 or 3?
 - Nursery system (1 or 2 phases)
 - Grow-out systems

Nursery System

- I or 2 –phase nursery system?
 - Grow post larvae (PLs) from 2 mg to as large as 3 6 g.
 - Bigger, stronger and uniform juveniles with better survival and a high potential for compensatory growth.
 - Flexibility in grow out production cycles (turnovers)
 - Reducing time to market size
 - Efficient use of resources tanks, ponds, etc.
 - Improves health and disease management more developed immune system

Nursery System

Disadvantages

- More infrastructure investments, e.g., higher construction costs
- Higher operational costs
- High labor requirements ~ a sensitive stage in the production process
- Involves high stocking density and lower water exchange, which could results in higher organic loading, poor water quality & health risks.
- Potential stress to juveniles due to more handling and movement, which increases disease susceptibility.
- Properly trained personnel required for success.

Spreadsheet Models

 <u>https://ag.purdue.edu/agecon/Pages/Aquaculture-</u> <u>Budget.aspx</u>

Pacific White Shrimp (*Litopenaeus vannamei*)

- Indoor Shrimp "21-25" Count Example
- Indoor Shrimp "26-30" Count Example
- Indoor Shrimp "31-35" Count Example

Production Parameters - Example

- Renovating existing farm building / new construction
- 8-pool system, each with a capacity of 4,200 gallons.
 Complete package with pumps, aeration, biofloc settling system, etc.
- A 4,200 gallon capacity pool is equivalent to 15.9m³
- Support equipment and materials water heater, water storage, emergency generator, purge tank, agitators, blowers, monitoring equipment, water quality test kits, and miscellaneous equipment (nets, scale, buckets, etc).

Production Parameters - Example

- Grow-out phase
 - Stocking rates from 300-500/m³; a stocking size of 1.3g is stocked at 450/m³, i.e., 7,200 PLs per tank/pool.
 - Stocking PLs of at least 3g.
- Production period varies by marketable size
- Production schedule assumes shrimp is harvested every other week
- Calculate average number of pools harvested every year per sizes

Production Parameters - Example

Parameters	"21/25" count	"26/30" count	"31/35" count	"21/25" count
Rearing period (weeks)	14	12	11	12
Frequency of harvest (pools/yr)	28	32	34	32
Stocking rate (PL//m ³	450	450	450	450
Stocking size (g)	1.3	1.3	1.3	3.0
Feed conversion	1.4	1.4	1.3	1.4
Final weight (g)	20	16	14	22

PURDU

EXTENSION

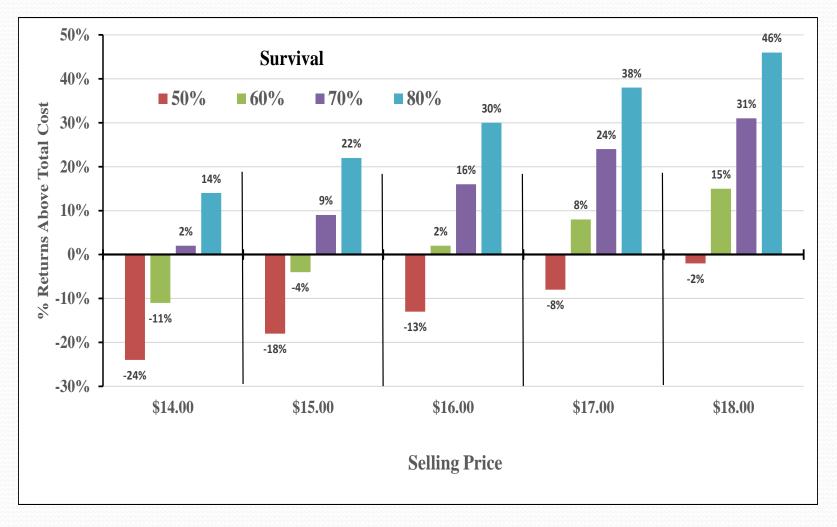
AGRICULTURAL ECONOMICS

	Unit	Cost / Unit (\$)	Quantity	Cost (\$)	% of Total cost
Sales Receipts	lb	16.00	6,222	99,557.31	
Variable Inputs:					
PL	#	0.10	201,600	20,160.00	24%
Feed Price	lb.	1.20	7,904	9,484.87	11%
Electricity	kw-hr.	0.06	9,333	560.01	1%
Hired Labor	Hour	10.00	1095	10,950.00	13%
Heating	year	8.00	560.64	4,485.12	5%
Chemicals	\$	100.00	8	800.00	1%
Insurance	%	148.51	12	1,782.10	2%
Loan + Interest	%			7,794.97	9%
Total Variable Costs (TVC)	\$			56,017.07	65.42%
Cost/lb				9.00	
RDUE AGRICULTURAL ENSION ECONOMICS					Sea C

		Unit	Cost / Unit (\$)	Quantity	Cost (\$)	% of Total	
	Fixed Inputs:					cost	
	Building	\$	4,500.00	0.03	150.00	о%	
	Complete Tank System	\$	46,800.00	0.10	4,680.00	5%	
	Water Heater	\$	4,230.00	0.10	423.00	0%	
	Water Storage	\$	2,340.00	0.10	234.00	o%	
	Emergency Generator	\$	4,050.00	0.07	270.00	o%	
	Purge Tank	\$	405.00	0.10	40.50	o%	
	Agitators	\$	4,320.00	0.20	864.00	1%	
	Blower	\$	3,060.00	0.20	612.00	1%	
	Monitoring Equipment	\$	675.00	0.20	135.00	o%	
	Water Quality Equipment	\$	4,636.80	0.20	927.36	1%	
	Fish Handling Equipment	\$	900.00	0.50	450.00	1%	
	Feed Storage	\$	450.00	0.20	90.00	o%	
	System Set-up labor	\$	5,120.00	1.00	5,120.00	6%	
	Miscellaneous equipment	\$	4,500.00	0.20	900.00	1%	
	Maintenance	\$	297.02	12.00	3,564.21	4%	
	Management	\$	928.80	12	11,145.60	13%	
	Total Fixed Costs				29,605.67	34.58%	
	Total Costs (TC)	\$			85,622.74	100.00%	
	Break-even price (BEP)	\$/lb			13.76		
Pu	Profit Above TVC	\$/lb			4.76	35%	10 Mant
PU EXT	Profit Above TC	\$/lb			2.24	16%	A GIAIL

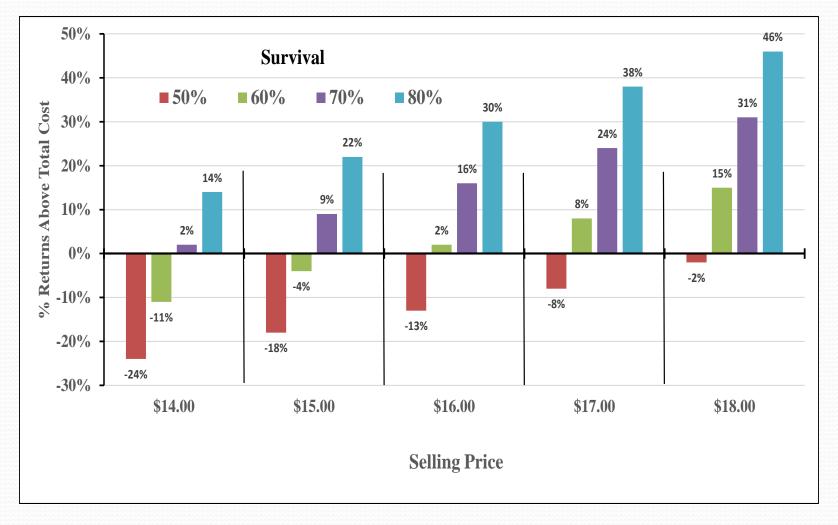
Profitability

- Breakeven price is \$13.76/lb price point where the sale price covers total cost (both fixed and variable)
- Profit is obtained with selling price higher than \$13.76.
- Aquaculture is a high-risk industry, so target at least 15% profit margin.
- Controllable factors
 - Management Stocking size, densities, survival, feeding, water quality, etc
- Less Controllable factors
 - Input costs, input supply, prices


Sensitivity Analysis

- Variables that significantly affect profitability are survival rate (or mortality) and selling price
- Scenario analysis of profit margin with a range of selling prices and survival rates.
 - survival rates of 50% 80%
 - selling price from \$12.00 \$18.00

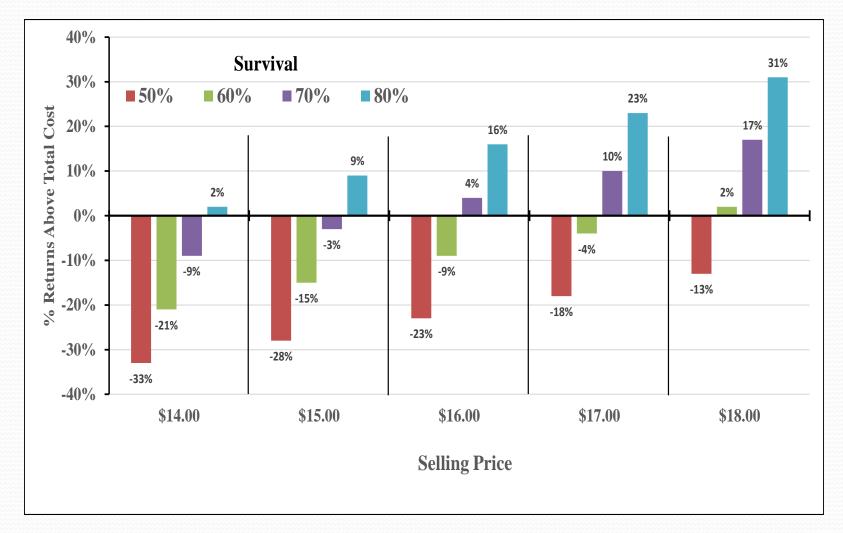
% profit for "21/25" Count (1.3g, 14wk)



AGRICULTURAL ECONOMICS

EXTENSION

% profit for "21/25" Count (3g, 12wk)



AGRICULTURAL ECONOMICS

EXTENSION

% profit for "26/30" Count

AGRICULTURAL ECONOMICS

EXTENSION

% profit for "31/35" Count

Pu

RD

EXTENSION

AGRICULTURAL

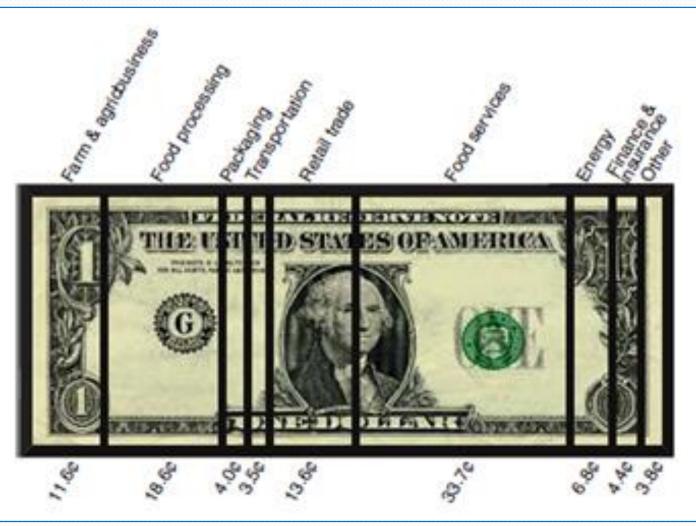
ECONOMICS

Take aways

- Indoor production of Pacific White shrimp is profitable when grown to larger sizes.
- 2. The additional value of weight gain for large shrimp is more than the additional cost incurred in producing it.
 - Returns on larger sizes far outweigh the cost of producing them.
- 3. Farmers should consider stocking larger PLs of at least 3g to obtain larger shrimp within a shorter rearing period.

Take aways

- 4. Small size shrimp involves less time to produce, but the high turnover requires more production, resources, and therefore higher cost.
- 5. Good and efficient farm management practices are needed to minimize mortality.
- 6. Marketing strategies are essential to obtain premiums to assure profitability.

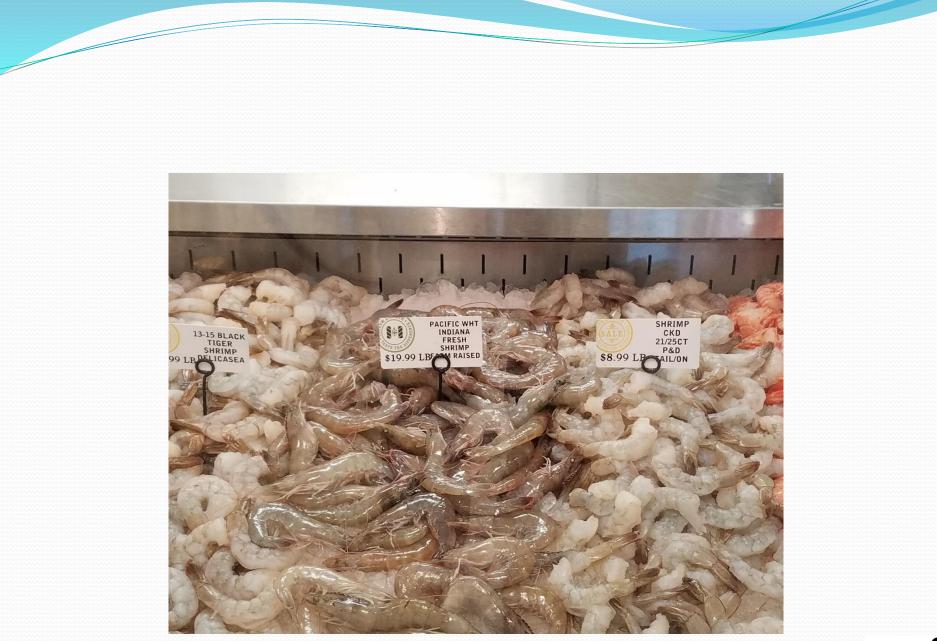


Marketing

- Possible market outlets
 - Market store, farmers' market, CSA, food hubs, aggregators, local grocers & restauranteurs, etc.
- Location, location, location!
- Direct marketing locally produced

2011 Food Dollar

PURDUE AGRICULTURAL EXTENSION ECONOMICS



PURDUE EXTENSION AGRICULTURAL ECONOMICS

THANKS

QUESTIONS [20]

